KINETICS OF ACID CATALYZED DECOMPOSITION OF SUBSTITUTED 1,3-DIPHENYL-3-METHYLTRIAZENES

Petr Svoboda, Oldřich Pytela and Miroslav Večeřa
Department of Organic Chemistry,
Institute of Chemical Technology, 53210 Pardubice

Received June 5th, 1985

Abstract

Kinetics of the acid catalyzed decomposition of fifteen 1-substituted-1,3-diphenyl-3-methyltriazenes have been studied in 40% aqueous ethanolic buffers at $25^{\circ} \mathrm{C}$. The slope found for the dependence $\log k_{o b s}$ vs pH of the buffer is not equal to unity, and a method of treating such experimental data is suggested. The reaction constant found ($\varrho=-3 \cdot 70$) indicates that substituents have similar effects on both protonation and decomposition of the triazene chain.

Kinetics of the acid catalyzed decomposition of triazenes have been studied by several authors. Nietzki ${ }^{1}$ gave the first experimental piece of evidence for the rearrangement to have an intermolecular course. Suizu and Yokozima found ${ }^{2}$ that diazonium ion is formed in the course of the reaction. Hughes and Ingold ${ }^{3,4}$ suggested the $A 2$ mechanism for the decomposition whose first step consists in the protonation of the triazene which is followed by decomposition into diazonium ion and aniline by attack of the nucleophile X according to Scheme 1.

$$
\begin{gathered}
\mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{NH}-\mathrm{Ar}^{\prime}+\mathrm{H}^{(+)} \rightleftarrows \mathrm{Ar}-\mathrm{N}=\mathrm{N}-{\stackrel{(+)}{\mathrm{N}} \mathrm{H}_{2}-\mathrm{Ar}^{\prime}}^{\mathrm{Ar}-\mathrm{N}=\mathrm{N}-{\stackrel{(+)}{N} \mathrm{H}_{2}-\mathrm{Ar}^{\prime}+\mathrm{X}^{(-)} \rightarrow}_{\rightarrow}} \begin{array}{c}
\left.\mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{X} \rightleftarrows \mathrm{Ar}-\mathrm{N} \equiv \mathrm{~N} \equiv{ }^{(-)} \mathrm{X}\right]+\mathrm{Ar}^{\prime}-\mathrm{NH}_{2} \\
\mathrm{Ar}^{\prime}-\mathrm{NH}_{2}+\mathrm{Ar}-\stackrel{(+)}{\mathrm{N}} \equiv \mathrm{~N} \rightarrow \mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{Ar}^{\prime}--\mathrm{NH}_{2}+\mathrm{H}^{(+)}
\end{array}
\end{gathered}
$$

Scheme 1

Kruglov et al. ${ }^{5}$ and Beneš and coworkers ${ }^{6}$ dealt with kinetic studies of this mechanism. In these studies no evidence was found in favour of the rapid protonation pre-equilibrium according to Scheme 1 . Also studied were the kinetics of decomposition of 3-acyl- and 3-carbamoylderivatives of 1,3-diphenyltriazenes in water ${ }^{7-10}$ and the solvent ${ }^{11}$ and salt effects ${ }^{12}$. The hydrolysis of 3 -(N-methylcarbamoyl)-1,3--diphenyltriazenes exhibits a break in the Hammett dependence for substituents
with $\sigma \geqq 0 \cdot 7$, and this fact was explained by a change in the mechanism ${ }^{7}$. Large negative ΔS^{\neq}values were found for decomposition of 3-acetyl-1,3-diphenyltriazenes, which indicates participation of water molecules in the transition state ${ }^{10}$. This hypothesis was further supported by results of studies of the solvent and salt effects ${ }^{11.12}$ on decomposition of these derivatives.

The kinetic studies of decomposition of 1-aryl-3-alkyl-triazenes carried out by Zvěřina and coworkers ${ }^{13}$ and Isaacs and Rannala ${ }^{14,15}$ postulated the $A 1$ mechanism with a rapid pre-equilibrium for the decomposition of these derivatives. Jones and coworkers ${ }^{16}$, on the contrary, suggested the $A-S_{\mathrm{E}} 2$ mechanism for the decomposition of alkylaryltriazenes in which the protonation of the substrate proceeds simultaneously with the decomposition of the triazene chain. Yamada ${ }^{17}$ dealt with a study of decomposition of 1,3-diphenyl-3-methyltriazenes in 95% aqueous ethanol. The author postulated the decomposition of the protonated substrate (by the A1 mechanism) as the rate-limiting step.

On the whole it can be stated that the opinions of the decomposition mechanism of 1,3-diphenyltriazenes and their derivatives are considerably contradictory, and the problem is far from being fully solved. Participation of water in the transition state of the reaction has not yet been elucidated either.

The aim of this communication was to study the mechanism of the acid catalyzed decomposition of the triazene chain using substituted 1,3-diphenyl-3-methyltriazenes. Introduction of the methyl group into 1,3-diphenyltriazene chain prevents its prototropy, and thus it is possible to separately study the substituent effects in the benzene rings bound to 1 and 3 nitrogen atoms of the triazene chain.

EXPERIMENTAL

3-Methyl-1-(X-phenyl)-3-phenyltriazenes were prepared by reaction of substituted diazonium salts with N -methylaniline: 0.05 mol N -methylaniline was dissolved in 15 ml conc. HCl and 15 ml water. The mixture was boiled until dissolution of the hydrochloride formed, whereupon it was neut ralized - while hot - with 20% sodium acetate solution. After cooling to $0^{\circ} \mathrm{C}$, the diazonium salt solution was added with stirring. The mixture was stirred until the diazonium salt reacted (detection with disodium 3-hydroxynaphthalene-2,7-disulphonate). The yellow to orange solid formed was collected by suction, washed with water, and dried in air. The oily triazenes were extracted in benzene, the solution was dried with sodium sulphate, and benzene was distilled off in vacuum. The raw products were purified by recrystallization and column chromatography with alumina and tetrachloromethane as eluent. The yields, physical constants, and solvents used for the recrystallizations are summarized in Table I.

The kinetic measurements were carried out by the procedure described in ref. ${ }^{8}$ using a Specord UV VIS and a VSU-2 spectrophotometers (Zeiss, Jena). The time dependence of the spectra measured during the decomposition showed no isosbestic points in most cases of the model compounds. Therefore, we added $10 \mu / 1 \mathrm{~mol}^{-1}$ solution of 1,3 -benzenediamine to the cell containing $10 \mathrm{ml} 40 \%$ aqueous-ethanolic buffer. The diamine reacted faster than the aniline liberated with the diazonium ion formed, and so the isosbestic point of the time dependence of spectral records

Table I

Yields, physical properties, and elemental analyses of the substituted 3-methyl-1,3-diphenyltriazenes $\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{N}-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}$

Compound	X	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$	$\begin{aligned} & \text { M.p. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Calculated/ /Found, \%N	$\begin{gathered} \lambda_{\max } \\ \mathrm{nm} \end{gathered}$
I	H	90	oil ${ }^{\text {a }}$	19.89/20.13	343
II	$4-\mathrm{CH}_{3} \mathrm{O}$	86	$59 \cdot 5-60 \cdot 1^{b}$	17.41/17.64	352
III	$3-\mathrm{CH}_{3}$	98	$61 \cdot 0-61 \cdot 5^{c}$	18.65/19.12	345
IV	$4-\mathrm{CH}_{3}$	99	$61 \cdot 5-62 \cdot 5^{d}$	18.65/18.71	347
V	3-F	70	oil	18.33/17.98	349
$V I$	4-F	98	$43 \cdot 5-46 \cdot 0$	18.33/17.99	343
VII	$3-\mathrm{Cl}$	80	40.0-42.0	17.10/17.19	346
VIII	$4-\mathrm{Cl}$	80	$86.0-87.0{ }^{e}$	17.10/16.98	347
IX	$4-\mathrm{Br}$	98	$88 \cdot 0-89 \cdot 0$	$14 \cdot 48 / 14 \cdot 34$	349
X	$3-\mathrm{CF}_{3}$	43	$36.0-38.0$	$15 \cdot 72 / 15 \cdot 85$	345
$X I$	$4-\mathrm{CF}_{3}$	60	$83 \cdot 0-86 \cdot 0^{f}$	$15 \cdot 72 / 15 \cdot 85$	345
XII	$3-\mathrm{CN}$	95	$56 \cdot 0-58 \cdot 0$	23.71/22.70	347
XIII	$4-\mathrm{CN}$	95	116.0-118.0 ${ }^{9}$	23.71/23.49	357
XIV	$3-\mathrm{NO}_{2}$	70	$95 \cdot 5-97 \cdot 0$	12.49/12.16	334
$X V$	$4-\mathrm{NO}_{2}$	97	129.0-130.0	12.49/13.00	384

${ }^{a}$ M.p. (ref. ${ }^{18}$) - oil; ${ }^{b}$ m.p. (ref. ${ }^{19}$) $59 \cdot 8-60 \cdot 2^{\circ} \mathrm{C}$, (ref. ${ }^{17}$) $59 \cdot 5-60 \cdot 0^{\circ} \mathrm{C}$, (ref. ${ }^{20}$) $61 \cdot 0^{\circ} \mathrm{C}$; ${ }^{c}$ m.p. (ref..17) $63 \cdot 5-64 \cdot 5^{\circ} \mathrm{C}$, (ref. ${ }^{20}$) $67^{\circ} \mathrm{C}$; ${ }^{d}$ m.p. (ref. ${ }^{17}$) $66-67^{\circ} \mathrm{C}$, (ref. ${ }^{19}$) $67-67 \cdot 8^{\circ} \mathrm{C}$, (ref. ${ }^{20}$) $66 \cdot 5$ to $68^{\circ} \mathrm{C}$; ${ }^{e}$ m.p. (ref. ${ }^{17}$) $87-88^{\circ} \mathrm{C}$, (ref. ${ }^{19}$) $86 \cdot 7-88 \cdot 1^{\circ} \mathrm{C} ;{ }^{f}$ m.p. (ref. ${ }^{19}$) $86 \cdot 0-86 \cdot 9^{\circ} \mathrm{C}$; ${ }^{g}$ m.p. (ref. ${ }^{17}$) $120-120 \cdot 5^{\circ} \mathrm{C}$.

Table II
Dependence of the rate constant of decomposition of 1,3-diphenyl-3-methyltriazene on addition of 1,3 -benzenediamine solution $\left(c=1 \mathrm{~mol}^{-1}\right)$ at $25^{\circ} \mathrm{C}$ in 40% ethanol at pH 4.79

Addition of the solution, μl	$10^{3} k$ s^{-1}	$10^{5} s_{k}^{a}$
10	6.626	3.881
20	6.396	2.448
30	6.264	2.849
40	6.364	3.129
50	6.632	3.321
60	5.873	2.689
70	5.872	2.745
80	5.837	2.598

${ }^{a} s_{k}$ standard deviation of the rate constant.
Collection Czechoslovak Chem. Commun. [Vol. 51] [1986]
of the decomposition was maintained. The kinetic measurements were evaluated according to an optimization program described elsewhere ${ }^{21}$.

Table III

Rate constants of the acid catalyzed decomposition of substituted 1,3-diphenyl-3-methyltriazenes $I-X V$ at different pH values

$$
\mathrm{pH} \quad 10^{3} k, \mathrm{~s}^{-1} \quad 10^{5} s_{k} \quad \mathrm{pH} \quad 10^{3} k, \mathrm{~s}^{-1} \quad 10^{5} s_{k}
$$

$$
I, \mathrm{X}=\mathrm{H}
$$

$2 \cdot 63$	497	206	$4 \cdot 24$	$19 \cdot 2$	$14 \cdot 1$
$2 \cdot 63$	482	158	$4 \cdot 24$	$19 \cdot 1$	$11 \cdot 4$
2.63	481	$86 \cdot 1$	$4 \cdot 36$	$12 \cdot 9$	$7 \cdot 33$
$2 \cdot 80$	325	123	$4 \cdot 36$	$13 \cdot 0$	$9 \cdot 05$
$2 \cdot 80$	330	$86 \cdot 0$	$4 \cdot 45$	$14 \cdot 2$	11.8
$2 \cdot 80$	333	$72 \cdot 2$	4.45	$16 \cdot 9$	$6 \cdot 53$
$2 \cdot 92$	264	$66 \cdot 9$	$4 \cdot 53$	$10 \cdot 2$	$3 \cdot 71$
$2 \cdot 92$	260	$47 \cdot 2$	$4 \cdot 53$	$12 \cdot 4$	$5 \cdot 52$
$2 \cdot 92$	261	100	$4 \cdot 60$	6.46	$5 \cdot 89$
$3 \cdot 15$	164	$81 \cdot 6$	$4 \cdot 60$	$6 \cdot 83$	$3 \cdot 20$
3.15	165	100	$4 \cdot 74$	$5 \cdot 31$	$2 \cdot 97$
$3 \cdot 15$	169	$49 \cdot 9$	$4 \cdot 74$	$6 \cdot 44$	$13 \cdot 4$
$3 \cdot 31$	121	$39 \cdot 6$	$4 \cdot 79$	$4 \cdot 67$	$3 \cdot 29$
$3 \cdot 31$	122	$38 \cdot 6$	$4 \cdot 79$	$4 \cdot 91$	$2 \cdot 89$
$3 \cdot 31$	123	$32 \cdot 0$	$4 \cdot 84$	$4 \cdot 67$	$2 \cdot 22$
$3 \cdot 50$	$79 \cdot 1$	$44 \cdot 9$	$4 \cdot 84$	$4 \cdot 67$	$2 \cdot 17$
$3 \cdot 85$	$37 \cdot 1$	$16 \cdot 7$	$5 \cdot 09$	$2 \cdot 42$	$1 \cdot 43$
$3 \cdot 85$	$40 \cdot 2$	$21 \cdot 5$	$5 \cdot 09$	$2 \cdot 44$	1.94
$3 \cdot 92$	$32 \cdot 1$	$19 \cdot 8$	$5 \cdot 56$	0.987	0.517
$3 \cdot 92$	$31 \cdot 7$	12.5	$5 \cdot 56$	0.942	0.523
$3 \cdot 92$	$32 \cdot 5$	$14 \cdot 1$	6.09	0.265	0.242
			$6 \cdot 23$	$0 \cdot 189$	$0 \cdot 332$

$I I, X=4-\mathrm{CH}_{3} \mathrm{O}$					
2.63	3333	9739	3.61	$535 \cdot 3$	227.9
2.63	3920	5311	3.92	256.0	57.86
2.80	2755	2240	4.24	126.1	64.14
2.80	2728	2294	4.45	75.37	136.6
2.80	2745	2470	4.74	40.07	14.32
2.92	2167	1727	4.84	32.61	6.498
2.92	2159	1223	5.09	18.39	5.272
3.15	1394	1410	5.58	7.234	3.583
3.15	1395	507.7	6.09	2.353	1.205
3.31	925.2	316.3			

Table III
(Continued)

pH	$10^{3} \mathrm{k}, \mathrm{s}^{-1}$	$10^{5} s_{k}$	pH	$10^{3} k, \mathrm{~s}^{-1}$	$10^{5} s_{k}$
III, $\mathrm{X}=3-\mathrm{CH}_{3}$			$I V, \mathrm{X}=4-\mathrm{CH}_{3}$		
$3 \cdot 69$	$77 \cdot 1$	$44 \cdot 0$	3.92	$92 \cdot 6$	$73 \cdot 3$
$4 \cdot 12$	$20 \cdot 6$	20.6	$4 \cdot 12$	$62 \cdot 2$	$62 \cdot 0$
$4 \cdot 24$	$18 \cdot 7$	24.9	$4 \cdot 24$	$46 \cdot 3$	41.2
$4 \cdot 24$	$19 \cdot 4$	$11 \cdot 4$	$4 \cdot 36$	$40 \cdot 7$	$25 \cdot 4$
$4 \cdot 36$	$15 \cdot 8$	$10 \cdot 3$	$4 \cdot 45$	30.9	$30 \cdot 5$
$4 \cdot 45$	$12 \cdot 1$	$6 \cdot 79$	$4 \cdot 60$	$19 \cdot 8$	$10 \cdot 9$
$4 \cdot 60$	$8 \cdot 21$	$4 \cdot 66$	$4 \cdot 74$	$15 \cdot 4$	$9 \cdot 30$
$4 \cdot 74$	$5 \cdot 79$	$4 \cdot 56$	$4 \cdot 84$	$13 \cdot 4$	$8 \cdot 65$
$4 \cdot 84$	$4 \cdot 90$	$2 \cdot 58$	5.09	$7 \cdot 37$	6.05
$5 \cdot 09$	$2 \cdot 76$	$1 \cdot 40$	$5 \cdot 58$	3.03	$1 \cdot 75$
$5 \cdot 58$	1.05	$1 \cdot 07$	$6 \cdot 09$	0.758	0.628
$6 \cdot 09$	0.500	$5 \cdot 66$	$6 \cdot 23$	$0 \cdot 500$	0.466
$V, \mathrm{X}=3-\mathrm{F}$			$V I, X=4-\mathrm{F}$		
$2 \cdot 92$	$12 \cdot 8$	$4 \cdot 99$	$3 \cdot 31$	57.3	$51 \cdot 1$
$3 \cdot 31$	$5 \cdot 57$	$2 \cdot 57$	$3 \cdot 61$	$30 \cdot 5$	28.9
$3 \cdot 61$	2.77	$2 \cdot 00$	$4 \cdot 12$	9.39	$9 \cdot 58$
$4 \cdot 12$	0.936	0.527	$4 \cdot 24$	7.75	$5 \cdot 68$
$4 \cdot 36$	$0 \cdot 632$	0.479	$4 \cdot 36$	6.59	$6 \cdot 18$
$4 \cdot 60$	$0 \cdot 500$	$2 \cdot 85$	$4 \cdot 45$	5.54	$4 \cdot 74$
$4 \cdot 84$	$0 \cdot 333$	$2 \cdot 83$	$4 \cdot 60$	3.41	2.43
			$4 \cdot 74$	2.44	2.65
			$4 \cdot 84$	$2 \cdot 25$	$2 \cdot 24$
			5.09	1.16	0.915
			$5 \cdot 58$	$0 \cdot 500$	$1 \cdot 23$
$V I I, \mathrm{X}=3-\mathrm{Cl}$			$V I I I, X=4-\mathrm{Cl}$		
$2 \cdot 80$	$15 \cdot 3$	8.01	$2 \cdot 63$	79.9	$15 \cdot 3$
$2 \cdot 92$	9.73	$5 \cdot 03$	$2 \cdot 80$	$48 \cdot 1$	11.5
$3 \cdot 15$	$7 \cdot 40$	$3 \cdot 50$	$2 \cdot 92$	$37 \cdot 1$	11:4
$3 \cdot 31$	$4 \cdot 82$	$4 \cdot 10$	$3 \cdot 15$	$24 \cdot 6$	10.0
$3 \cdot 61$	$2 \cdot 82$	$2 \cdot 32$	$3 \cdot 28$	$13 \cdot 2$	6.27
$3 \cdot 92$	1.56	$2 \cdot 25$	$3 \cdot 61$	8.21	$5 \cdot 68$
$4 \cdot 12$	0.936	1.85	3.92	$5 \cdot 19$	6.46
$4 \cdot 24$	0.403	$2 \cdot 65$	$3 \cdot 92$	$4 \cdot 70$	$4 \cdot 45$
$4 \cdot 36$	$0 \cdot 509$	1.96	$4 \cdot 12$	$3 \cdot 33$	$3 \cdot 59$
			$4 \cdot 24$	2.03	0.406
			$4 \cdot 36$	1.75	0.828
			$4 \cdot 45$	1.51	1.03
			$4 \cdot 60$	0.893	1.59
			$4 \cdot 74$	$0 \cdot 867$	0.689
			$4 \cdot 84$	0.668	0.747
			5.09	$0 \cdot 500$	0.313

Table III
(Continued)

pH	$10^{3} k, s^{-1}$	$10^{5} s_{k}$	pH	$10^{3} k, s^{-1}$	$10^{5} s_{k}$
$I X, \mathrm{X}=4-\mathrm{Br}$			$X, \mathrm{X}=3-\mathrm{CF}_{3}$		
$2 \cdot 80$	$36 \cdot 9$	16.6	2.73	6.38	$4 \cdot 26$
$2 \cdot 92$	$33 \cdot 3$	25.4	$2 \cdot 88$	$4 \cdot 83$	5.58
$3 \cdot 15$	$20 \cdot 1$	$15 \cdot 8$	3.02	$3 \cdot 50$	8.91
$3 \cdot 31$	$12 \cdot 1$	12.7	$3 \cdot 30$	4.00	6.79
$3 \cdot 61$	8.12	$10 \cdot 4$	$3 \cdot 85$	$0 \cdot 500$	0.234
$3 \cdot 92$	$4 \cdot 96$	4.02	$4 \cdot 36$	$0 \cdot 125$	$0 \cdot 300$
$4 \cdot 12$	$2 \cdot 89$	$2 \cdot 79$			
$4 \cdot 24$	1.55	$2 \cdot 87$			
$4 \cdot 36$	$1 \cdot 50$	1.04			
4.45	1.25	0.844			
$4 \cdot 60$	0.839	0.923			
$4 \cdot 74$	0.545	0.888			
$4 \cdot 84$	0.484	0.422			
5.09	0.294	$0 \cdot 315$			
$5 \cdot 58$	$0 \cdot 167$	0.569			
$X I, \mathrm{X}=-4-\mathrm{CF}_{3}$			$X I I, \mathrm{X}=3-\mathrm{CN}$		
$2 \cdot 80$	3.67	3.07	2.73	1.71	0.697
$2 \cdot 92$	$2 \cdot 73$	1.77	2.88	1.39	0.508
$3 \cdot 15$	2.33	$5 \cdot 35$	3.31	$0 \cdot 500$	$1 \cdot 41$
$3 \cdot 31$	1.35	0.714	3.61	0.560	$8 \cdot 35$
$3 \cdot 31$	1.49	$2 \cdot 15$	$3 \cdot 85$	0.176	0.294
$3 \cdot 61$	0.866	$0 \cdot 980$			
$3 \cdot 92$	0.469	$2 \cdot 33$			
$4 \cdot 12$	$0 \cdot 374$	1.23			
$4 \cdot 24$	$0 \cdot 106$	1.53			
$4 \cdot 36$	0.169	$1 \cdot 50$			
$4 \cdot 45$	$0 \cdot 139$	$1 \cdot 31$			
XIII, $\mathrm{X}=4-\mathrm{CN}$			$X V, \mathrm{X}=4-\mathrm{NO}_{2}$		
2.73	0.825	0.410	$2 \cdot 73$	$0 \cdot 366$	0.563
$2 \cdot 88$	0.635	0.071			
$3 \cdot 31$	0.500	0.79			
$3 \cdot 61$	0.092	0.169			

RESULTS AND DISCUSSION

To exclude the possibility of influence of general base catalysis with 1,3 -benzenediamine, we examined the dependence of the rate constants of decomposition of 1,3-
diphenyl-3-methyltriazene on addition of $1 \mathrm{~mol}^{-1}$ solution of 1,3-benzenediamine. The results are given in Table II. The decomposition rate did not change in considerably broad range of addition of $1 \mathrm{moll}^{-1} 1,3$-benzenediamine. The rate constants of the acid catalyzed decomposition of compounds $I-X V$ are summarized in Table III for buffers of different pH . The values of the $\log k_{I}$ constants and the slope b of the pH profile were calculated from Eq. (1).

$$
\begin{equation*}
\log k_{\mathrm{obs}}=\log k_{I}-b \mathrm{pH} \tag{1}
\end{equation*}
$$

Table IV
The $\log k_{I}$ values and slopes b of the pH profiles determined from Eq. (1) by linear regression

Compound	$\log k_{I}$	$s\left(\log k_{I}\right)$	b	s_{b}	$n^{\text {a }}$	$r^{\text {b }}$
I	2.1025	$0 \cdot 0392$	-0.914	0.010	42	-0.9978
II	3.0599	0.0238	-0.936	0.006	19	-0.9996
III	$2 \cdot 0605$	$0 \cdot 1116$	-0.896	0.024	12	-0.9965
IV	2.7878	0.0824	-0.968	0.017	12	-0.9985
V	$0 \cdot 5007$	$0 \cdot 1266$	-0.836	0.032	8	-0.9956
$V I$	1.8080	0.0782	-0.923	0.017	11	-0.9984
VII	0.6002	$0 \cdot 1021$	-0.875	0.030	7	-0.9971
VIII	$1 \cdot 2144$	0.0808	-0.907	0.020	16	-0.9986
IX	1.1849	$0 \cdot 1179$	-0.919	0.031	11	-0.9949
X	0.6971	0.0831	-1.049	0.024	5	-0.9992
XI	-0.0499	$0 \cdot 1161$	--0.842	0.032	10	-0.9943
XII	-0.2892	0.1166	-0.902	0.036	4	-0.9984
XIII	-0.0439	$0 \cdot 1713$	-1.105	0.055	3	--0.9987

[^0]Table V
The $t_{\text {test }}$ and $t_{\text {crit }}$ values at the significance level $\alpha=0.05$ for the slopes b of the relation (1)

Compound	$t_{\text {test }}$	n	$t_{\text {crit }}$	Compound	$t_{\text {test }}$	n	$t_{\text {crit }}$
I	8.835	42	2.021	$V I I I$	4.579	16	2.145
$I I$	10.590	19	2.110	$I X$	2.636	11	2.262
$I I I$	4.376	12	2.228	X	-2.008	5	3.182
$I V$	1.914	12	2.228		$X I$	4.949	10
V	5.099	8	2.447	$X I I$	2.702	4	4.306
$V I$	4.404	11	2.262	$X I I I$	-1.895	3	12.706
VII	4.189	7	2.571				

The values calculated are given in Table IV along with their statistical characteristics. For most of the compounds studied the slope b of the pH profile was not equal to but lower than unity. At the same time, the correlation coefficients of the relation (1) are quite high, $r \geqq 0.99$. So the relation (1) is fulfilled very well, the only exceptions being compounds X and XIII for which the slope value found was greater than one.

To verify the non-unit slopes of the pH profiles, we tested the b values by the t-test. The test results are given in Table V along with the $t_{\text {crit }}$ values at the significance

Table VI
The $\log ^{\prime} k_{I}$ and $\log k_{I}^{i}$ values calculated according to Eqs (3) and (4) and the $\log k_{I}$ values from Table IV

Compound	$\log k_{I}$	$\log k_{I}^{i}$	$\log ^{\prime} k_{I}$	$s\left(\log ^{\prime} k_{I}\right)$
I	2.103	2.426	2.442	0.0903
II	3.060	3.303	3.303	0.0748
III	2.061	2.495	2.544	0.0863
$I V$	2.788	2.892	2.944	0.0468
V	0.501	1.114	1.150	0.1318
VI	1.808	2.081	2.149	0.0595
VII	0.600	1.072	1.009	0.0877
VIII	1.214	1.566	1.581	0.0928
IX	1.185	1.497	1.518	0.1051
X	0.6971	0.6245	0.5949	0.1559
XI	-0.0499	0.5699	0.4947	0.1272
XII	-0.2899	0.0332	0.0803	0.1366
XIII	-0.0439	-0.2316	-0.2722	0.1929
$X V$	-	-	-0.7064	-

Table ViI
The $\log k_{\mathrm{o}}$ and ϱ values of the Ha mmett relation for decomposition of substituted 1,3-diphenyl-3--methyltriazenes

Constant	$\log k_{\mathbf{o}}$	$s_{\log k_{\boldsymbol{v}}}$	ϱ	s_{e}	r	s
$\log k_{I}$	2.0250	0.0809	-3.51	0.22	-0.979	0.2278
$\log ^{\prime} k_{I}$	2.3663	0.0213	-3.70	0.05	-0.999	0.0604
$\log k_{I}^{i}$	2.3379	0.0245	-3.59	0.07	-0.998	0.0691

level of $\alpha=0.05$. This condition is not fulfilled with compounds $I V, X, X I I$, and XIII only. Hence, with most of the substrates studied, the non-unit slope (smaller than one) of the pH profile was confirmed.

The $\log k_{I}$ values obtained by linear regression from Eq. (1) are (with the nonunit slopes) loaded with great errors and give poor Hammett correlations, which leads to an error in determination of the reaction constant. Therefore, we evaluated the relations $\log k_{\text {obs }} v s \mathrm{pH}$ also by means of Eqs (3) and (4).

$$
\begin{gather*}
\log ^{\prime} k_{I}=n^{-1} \sum_{i=1}^{n}\left(\log k_{\mathrm{obs}}+\mathrm{pH}\right)_{\mathrm{i}} \tag{3}\\
\Delta \log k_{I}^{i+1}=\log k_{I}^{i}-\log k_{I}^{i+1}= \\
=\left(\mathrm{pH}_{2}-\mathrm{pH}_{1}\right)^{-1}\left(\int_{\mathrm{pH}_{1}}^{\mathrm{pH}} \log k_{\mathrm{obs}}^{i}-\int_{\mathrm{pH}_{1}}^{\mathrm{pH}_{2}} \log k_{\mathrm{obs}}^{i+1}\right) \tag{4}
\end{gather*}
$$

From Eq. (3) we obtain the mean value $\log k_{I}$ which corresponds best to the experimental values of the kinetic measurements. The relation (4) represents an analogy of the construction of the acidity function suggested by Pytela ${ }^{22}$. The $\log k_{I}^{i}$ values determined in this way respect best the relations between the individual pH profiles determined for the individual substrates. The basic $\log k_{\text {obs }} v s \mathrm{pH}$ dependence used was that for 1-(4-methoxyphenyl)-3-phenyl-3-methyltriazene (II). Table VI gives the $\log ^{\prime} k_{I}$ and $\log k_{I}^{i}$ values found along with (for comparison) the $\log k_{I}$ values from Table IV.

Fig. 1
The Hammett dependence of the $\log k_{1}$ values obtained from Eq. (1) for 3-methyl-1--(X-phenyl)-3-phenyltriazenes

Fig. 2
The Hammett dependence of the $\log ^{\prime} k_{I}$ values obtained from Eq. (3) for 3-methyl-1--(X-phenyl)-3-phenyltriazenes

From Table VI it is seen that the $\log ^{\prime} k_{I}$ values are not significantly different from the $\log k_{I}^{i}$ values. The standard deviation $s\left(\log ^{\prime} k_{I}\right)$ is comparable with $s\left(\log k_{I}\right)$ (Table IV). The $\log ^{\prime} k_{I}$ values considerably differ from the $\log k_{I}$ values (Table IV) for the pH profiles with non-unit slope, being identical for the profiles with unit slopes.

The effects of the substituents in the phenyl ring bound to 1 -nitrogen atom of the triazene chain were determined by linear regression of the $\log k_{I}$ values defined by Eqs (1), (3) and (4) with the substituent constants σ given in ref. ${ }^{23}$. The results are presented in Table VII and graphically represented in Figs 1 and 2 for $\log k_{I}$ and $\log ^{\prime} k_{I}$.

Table VII gives values of the correlation coefficients r, standard deviations $s_{\mathbf{e}}$ and standard deviation s, wherefrom it follows that the Hammett dependences are fulfilled much better with the $\log ^{\prime} k_{I}$ and $\log k_{I}^{i}$ values than with the $\log k_{I}$ values determined by the linear regression. This fact is also documented by Figs 1 and 2. The best dependence is obtained with the $\log ^{\prime} k_{I}$ values. The respective reaction constant $\varrho=-3.70$ agrees very well with that found by Yamada ${ }^{17}$ in 95% aqueous ethanol ($\varrho=-3.63$).

The high value of the reaction constants indicates identical effect of substituents in the benzene ring at 1 -nitrogen atom on both protonation of the triazene and stabilization of the diazonium cation formed. The reaction constant is then given by the sum of both the effects. These two effects make themselves felt equally in the $A-S_{E} 2$ mechanism and in $A 1$ and $A 2$ mechanisms, so it is impossible to differentiate between these mechanisms on the basis of the ϱ constant value. The decision is also impossible on the basis of the decomposition pH profiles. The $A 1$ and $A 2$ mechanisms should exhibit a plateau in the pH profile at lower pH values. It is possible, however, that the plateau lies outside the region studied, and so it was not found.

The acid catalyzed decomposition of 1,3-diphenyltriazenes exhibits the value $g=-2.59$ in 20% aqueous ethanol at $20^{\circ} \mathrm{C}$ (ref. ${ }^{6}$). Comparison of the values \log $k_{I}=4.17$ for 1 -phenyl-3-methyltriazene in water ${ }^{13}, \log k_{I}=3.98$ for 1,3 -diphenyltriazene in 20% ethanol ${ }^{6}$, and $\log ^{\prime} k_{I}=2.44$ for 1,3-diphenyl-3-methyltriazene (Table VI) shows that substitution of both the hydrogen atoms at the 3-nitrogen atom of triazene chain by alkyl or aryl group results in a considerable retardation of the decomposition. This result can be explained by retardation of the proton transfer to the substrate and, hence, also by increase in the substituent effects on the reaction $(\varrho=-3 \cdot 70)$.

REFERENCES

1. Nietzki R.: Chem. Ber. 10, 662 (1877).
2. Suizu K., Yokozima N.: J. Soc. Chem. Ind. Jap. 19, 32 (1926).
3. Hughes E. D., Ingold C. K.: Quart. Rev. Chem. Soc. 6, 34 (1952).
4. Ingold C. K.: Structure and Mechanism in Organic Chemistry, p. 610. Cornell University Press, New York 1953.
5. Kruglov V. K., Erskov A. P., Charcharov A. A.: Reakts. Sposob. Org. Soedin. 2, 9 (1965).
6. Beneš J., Beránek V., Zimprich J., Vetešník P.: This Journal 42, 702 (1977).
7. Pytela O., Večeřa M., Vetešník P.: This Journal 45, 2108 (1980).
8. Pytela O., Večeřa M., Vetešník P.: This Journal 45, 1269 (1980).
9. Pytela O., Večeřa M., Vetešník P.: This Journal 46, 898 (1981).
10. Pytela O., Pilný M., Večeřa M.: This Journal 49, 1173 (1984).
11. Pytela O., Svoboda P., Večeřa M.: This Journal 46, 2091 (1981).
12. Ludwig M., Pytela O., Večeřa M.: This Journal 46, 3104 (1981).
13. Zvěřina V., Remeš M., Diviš J., Marhold J., Matrka M.: This Journal 38, 251 (1973).
14. Isaacs N. S., Rannala E.: J. Chem. Soc., Perkin Trans. 2, 1974, 899.
15. Isaacs N. S., Rannala E.: J. Chem. Soc., Perkin Trans. 2, 1974, 902.
16. Jones C. C., Kelly M. A., Sinnott M. L., Smith P. J., Tzotzos G. T.: J. Chem. Soc., Perkin Trans. 2, 1982, 1655.
17. Yamada T.: Bull. Chem. Soc. Jap. 42, 3565 (1961).
18. Campbell T. W., Day B. F.: Chem. Rev. 48, 299 (1951).
19. Day B. F., Campbell T. W., Coppinger G. M.: J. Amer. Chem. Soc. 73, 4687 (1951).
20. Hunter L.: J. Chem. Soc. 1937, 320.
21. Pytela O., Večeřa M., Vetešník P.: Chem. Listy 73, 754 (1979).
22. Pytela O., Štumrová S., Večeřa M.: This Journal, 51, 564 (1986).
23. Exner O.: Korelačni vztahy v organické chemii. Published by SNTL/ALFA, Prague 1981. Translated by J. Panchartek.

[^0]: ${ }^{a} n$ number of points; ${ }^{b} r$ the correlation coefficient of Eq. (I).

